Dynamical flow characterization of transitional and chaotic regimes in convergingdiverging channels
نویسندگان
چکیده
Numerical investigation of laminar, transitional and chaotic flows in convergingdiverging channels are performed by direct numerical simulations in the Reynolds number range 10 < Re < 850. The temporal flow evolution and the onset of turbulence are investigated by combining classical fluid dynamics representations with dynamical system flow characterizations. Modern dynamical system techniques such as timedelay reconstructions of pseudophase spaces, autocorrelation functions, fractal dimensions and Eulerian Lyapunov exponents are used for the dynamical flow characterization of laminar, transitional and chaotic flow regimes. As a consequence of these flow characterizations, it is verified that the transitional flow evolves through intermediate states of periodicity, two-frequency quasi-periodicity, frequency-locking periodicity, and multiple-frequency quasi-periodicity before reaching a non-periodic unpredictable behaviour corresponding to low-dimensional deterministic chaos. Qualitative and quantitative differences in Eulerian dynamical flow parameters are identified to determine the predictability of transitional flows and to characterize chaotic, weak turbulent flows in converging-diverging channels. Autocorrelation functions, pseudophase space representations and Poincare maps are used for the qualitative identification of chaotic flows, assertion of their unpredictable nature, and recognition of the topological structure of the attractors for different flow regimes. The predictability of transitional flows is determined by analysing the autocorrelation functions and by representing their attractors in the reconstructed pseudophase spaces. The transitional flow behaviour is examined by the geometric visualization of the evolution of the attractors and Poincare maps until the appearance of a strange attractor at the onset of chaos. Eulerian Lyapunov exponents and fractal dimensions are quantitative parameters to establish the onset of chaos, the persistence of chaotic flow behaviour, and the long-term persistent unpredictability of chaotic Eulerian flow regimes. Lastly, three-dimensional simulations for converging-diverging channel flow are performed to determine the effect of the spanwise direction on the route of transition to chaos.
منابع مشابه
Transition to chaos in converging-diverging channel flows: Ruelle-Takens-Newhouse scenario
Direct numerical simulations of the transition process from laminar to chaotic flow in convergingdiverging channels are presented. The chaotic flow regime is reached after a sequence of successive supercritical Hopf bifurcations to periodic, quasiperiodic, and chaotic self-sustained flow regimes. The numerical experiments reveal three distinct bifurcations as the Reynolds number is increased, e...
متن کاملNumerical Simulation of Separation Bubble on Elliptic Cylinders Using Three-equation k-? Turbulence Model
Occurrence of laminar separation bubbles on solid walls of an elliptic cylinder has been simulated using a recently developed transitional model for boundary layer flows. Computational method is based on the solution of the Reynolds averaged Navier-Stokes (RANS) equations and the eddy-viscosity concept. Transitional model tries to simulate streamwise fluctuations, induced by freestream turbulen...
متن کاملDynamical behavior and synchronization of chaotic chemical reactors model
In this paper, we discuss the dynamical properties of a chemical reactor model including Lyapunov exponents, bifurcation, stability of equilibrium and chaotic attractors as well as necessary conditions for this system to generate chaos. We study the synchronization of chemical reactors model via sliding mode control scheme. The stability of proposed method is proved by Barbalate’s lemma. Numeri...
متن کاملLI-YORKE CHAOTIC GENERALIZED SHIFT DYNAMICAL SYSTEMS
In this text we prove that in generalized shift dynamical system $(X^Gamma,sigma_varphi)$ for finite discrete $X$ with at least two elements, infinite countable set $Gamma$ and arbitrary map $varphi:GammatoGamma$, the following statements are equivalent: - the dynamical system $(X^Gamma,sigma_varphi)$ is Li-Yorke chaotic; - the dynamical system $(X^Gamma,sigma_varphi)$ has an scr...
متن کاملA Secure Chaos-Based Communication Scheme in Multipath Fading Channels Using Particle Filtering
In recent years chaotic secure communication and chaos synchronization have received ever increasing attention. Unfortunately, despite the advantages of chaotic systems, Such as, noise-like correlation, easy hardware implementation, multitude of chaotic modes, flexible control of their dynamics, chaotic self-synchronization phenomena and potential communication confidence due to the very dynami...
متن کامل